Objectives: To investigate the effect of olfactory ecto-mesenchymal stem cell-derived exosomes (OE-MSC-Exos) on T follicular helper (Tfh) cell response and their implication in treating experimental Sjögrens syndrome (ESS).
Methods: C57BL/6 mice were immunized with salivary glands (SG) proteins to induce ESS mouse model. OE-MSC-Exos were added to the Tfh cell polarization condition, and the proportion of Tfh cells was detected by FCM. The PD-L1 of OE-MSCs was silenced with small interfering RNA to extract siPD-L1-OE-MSC-Exos.
Results: We found that transfer of OE-MSC-Exos markedly attenuated disease progression and reduced Tfh cell response in mice with ESS. In culture, OE-MSC-Exos potently inhibited the differentiation of Tfh cells from naïve T cells. Moreover, OE-MSC-Exos expressed high level of the ligand for the programmed cell death protein 1 (PD-L1), knocking down PD-L1 expression in OE-MSC-Exos significantly decreased their capacity to suppress Tfh cell differentiation in vitro. Consistently, transfer of OE-MSC-Exos with PD-L1 knockdown exhibited profoundly diminished therapeutic effect in ESS mice, accompanied with sustained Tfh cell response and high levels of autoantibody production.
Conclusion: Our results suggest that OE-MSC-Exos may exert their therapeutic effect in ameliorating ESS progression via suppressing Tfh cell response in a PD-L1-dependent manner.
Keywords: PD-L1, Sjögren’s syndrome; Tfh cells; exosomes; mesenchymal stem cells.
© 2022 Ke Rui, Ziwei Shen, Na Peng, Futao Zhao, Yuan Tang, Shiyi Liu, Xinyi Xu, Chang Liu, Ling Wu, Jie Tian, Liwei Lu, published by De Gruyter.