Hair cells of the inner ear are particularly sensitive to changes in mitochondria, the subcellular organelles necessary for energy production in all eukaryotic cells. There are over 30 mitochondrial deafness genes, and mitochondria are implicated in hair cell death following noise exposure, aminoglycoside antibiotic exposure, as well as in age-related hearing loss. However, little is known about the basic aspects of hair cell mitochondrial biology. Using hair cells from the zebrafish lateral line as a model and serial block-face scanning electron microscopy, we have quantifiably characterized a unique hair cell mitochondrial phenotype that includes (1) a high mitochondrial volume and (2) specific mitochondrial architecture: multiple small mitochondria apically, and a reticular mitochondrial network basally. This phenotype develops gradually over the lifetime of the hair cell. Disrupting this mitochondrial phenotype with a mutation in opa1 impacts mitochondrial health and function. While hair cell activity is not required for the high mitochondrial volume, it shapes the mitochondrial architecture, with mechanotransduction necessary for all patterning, and synaptic transmission necessary for the development of mitochondrial networks. These results demonstrate the high degree to which hair cells regulate their mitochondria for optimal physiology and provide new insights into mitochondrial deafness.
Keywords: cell biology; hair cells; mitochondria; neuroscience; ribbons; zebrafish.
Our ability to perceive sounds relies on tiny cells deep inside our ears which can convert vibrations into the electrical signals that our brain is able to decode. These ‘hair cells’ sport a small tuft of short fibers on one of their ends that can move in response to pressure waves. The large amount of energy required for this activity is provided by the cells’ mitochondria, the small internal compartments that act as cellular powerhouses. In fact, reducing mitochondrial function in hair cells can lead to hearing disorders. Mitochondria are often depicted as being bean-like, but they can actually adopt different shapes based on the level of energy they need to produce. Despite this link between morphology and function, little is known about what mitochondria look like in hair cells. Filling this knowledge gap is necessary to understand how these structures support hair cells and healthy hearing. To address this question, McQuate et al. turned to zebrafish, as these animals detect vibrations in water through easily accessible hair cells on their skin that work just like the ones in the mammalian ear. Obtaining and analysing series of 3D images from a high-resolution microscope revealed that hair cells are more densely populated with mitochondria than other cell types. Mitochondrial organisation was also strikingly different. The side of the cell that carries the hair-like structures featured many small mitochondria; however, on the opposite side, which is in contact with neurons, the mitochondria formed a single large network. The co-existence of different types of mitochondria within one cell is a novel concept. Further experiments investigated how these mitochondrial characteristics were connected to hair cell activity. They showed that this organisation was established gradually as the cells aged, with cellular activity shaping the architecture (but not the total volume) of the mitochondria. Overall, the work by McQuate et al. provides important information necessary to develop therapeutics for hearing disorders linked to mitochondrial dysfunction. However, by showing that various kind of mitochondria can be present within one cell, it should also inform studies beyond those that focus on hearing.
© 2023, McQuate et al.