Millimeter-wave (mm-wave) phased arrays can realize multi-Gb/s communication links but face challenges such as signal distribution and higher power consumption hindering their widespread deployment. Hybrid photonic mm-wave solutions combined with fiber-optics can address some of these bottlenecks. Here, we report an integrated photonic-assisted phased array transmitter applicable for low-power, compact radio heads in fiber to mm-wave fronthaul links. The transmitter utilizes optical heterodyning within an electronically controlled photonic network for mm-wave generation, beamforming, and steering. A photonic matrix phase adjustment architecture reduces the number of phase-shift elements from M × N to M + N lowering area and power requirements. A proof-of-concept 2 × 8 phased array transmitter is implemented that can operate from 24-29 GHz, has a steering range of 40°, and achieves 5 dBm EIRP at an optical power of 55 mW without using active mm-wave electronics. Data streams at 2.5 Gb/s are transmitted over 3.6 km of optical fiber and wirelessly transmitted attaining bit-error rates better than 10-11.
© 2023. The Author(s).