The utilization of thermodynamically favorable sulfur oxidation reaction (SOR) as an alternative to sluggish oxygen evolution reaction is a promising technology for low-energy H2 production while degrading the sulfur source from wastewater. Herein, amorphous/crystalline S-doped Pd nanosheet arrays on nickel foam (a/c S-Pd NSA/NF) is prepared by S-doping crystalline Pd NSA/NF. Owing to the ultrathin amorphous nanosheet structure and the incorporation of S atoms, the a/c S-Pd NSA/NF provides a large number of active sitesand the optimized electronic structure, while exhibiting outstanding electrocatalytic activity in hydrogen evolution reaction (HER) and SOR. Therefore, the coupling system consisting of SOR-assisted HER can reach a current density of 100 mA cm-2 at 0.642 V lower than conventional electrolytic water by 1.257 V, greatly reducing energy consumption. In addition, a/c S-Pd NSA/NF can generate H2 over a long period of time while degrading S2- in water to the value-added sulfur powder, thus further reducing the cost of H2 production. This work proposes an attractive strategy for the construction of an advanced electrocatalyst for H2 production and utilization of toxic sulfide wastewater by combining S-doping induced partial amorphization and ultrathin metal nanosheet arrays.
Keywords: S-doped; amorphous/crystalline; hydrogen evolution reaction; palladium nanosheet arrays; sulfur oxidation reaction.
© 2023 Wiley-VCH GmbH.