Observation of the Superconducting Proximity Effect from Surface States in SmB_{6}/YB_{6} Thin Film Heterostructures via Terahertz Spectroscopy

Phys Rev Lett. 2023 Mar 3;130(9):096901. doi: 10.1103/PhysRevLett.130.096901.

Abstract

The ac conduction of epitaxially grown SmB_{6} thin films and superconducting heterostructures of SmB_{6}/YB_{6} are investigated via time-domain terahertz spectroscopy. A two-channel model of thickness-dependent bulk states and thickness-independent surface states accurately describes the measured conductance of bare SmB_{6} thin films, demonstrating the presence of surface states in SmB_{6}. While the observed reductions in the simultaneously measured superconducting gap, transition temperature, and superfluid density of SmB_{6}/YB_{6} heterostructures relative to bare YB_{6} indicate the penetration of proximity-induced superconductivity into the SmB_{6} overlayer; the corresponding SmB_{6}-thickness independence between different heterostructures indicates that the induced superconductivity is predominantly confined to the interface surface state of the SmB_{6}. This study demonstrates the ability of terahertz spectroscopy to probe proximity-induced superconductivity at an interface buried within a heterostructure, and our results show that SmB_{6} behaves as a predominantly insulating bulk surrounded by conducting surface states in both the normal and induced-superconducting states in both terahertz and dc responses, which is consistent with the topological Kondo insulator picture.