Limb development has long served as a model system for coordinated spatial patterning of progenitor cells. Here, we identify a population of naive limb progenitors and show that they differentiate progressively to form the skeleton in a complex, non-consecutive, three-dimensional pattern. Single-cell RNA sequencing of the developing mouse forelimb identified three progenitor states: naive, proximal, and autopodial, as well as Msx1 as a marker for the naive progenitors. In vivo lineage tracing confirmed this role and localized the naive progenitors to the outer margin of the limb, along the anterior-posterior axis. Sequential pulse-chase experiments showed that the progressive transition of Msx1+ naive progenitors into proximal and autopodial progenitors coincides with their differentiation to Sox9+ chondroprogenitors, which occurs along all the forming skeletal segments. Indeed, tracking the spatiotemporal sequence of differentiation showed that the skeleton forms progressively in a complex pattern. These findings suggest an alternative model for limb skeleton development.
Keywords: Msx1; Sox9; chondroprogenitors; limb development; limb patterning; mesenchymal progenitor cells; mouse; progressive differentiation; single-cell RNA sequencing; skeletogenesis.
Copyright © 2023 Elsevier Inc. All rights reserved.