Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer

Eur Radiol. 2023 Aug;33(8):5634-5644. doi: 10.1007/s00330-023-09555-7. Epub 2023 Mar 28.

Abstract

Objectives: To investigate the predictive performance of the deep learning radiomics (DLR) model integrating pretreatment ultrasound imaging features and clinical characteristics for evaluating therapeutic response after neoadjuvant chemotherapy (NAC) in patients with breast cancer.

Methods: A total of 603 patients who underwent NAC were retrospectively included between January 2018 and June 2021 from three different institutions. Four different deep convolutional neural networks (DCNNs) were trained by pretreatment ultrasound images using annotated training dataset (n = 420) and validated in a testing cohort (n = 183). Comparing the predictive performance of these models, the best one was selected for image-only model structure. Furthermore, the integrated DLR model was constructed based on the image-only model combined with independent clinical-pathologic variables. Areas under the curve (AUCs) of these models and two radiologists were compared by using the DeLong method.

Results: As the optimal basic model, Resnet50 achieved an AUC and accuracy of 0.879 and 82.5% in the validation set. The integrated DLR model, yielding the highest classification performance in predicting response to NAC (AUC 0.962 and 0.939 in the training and validation cohort), outperformed the image-only model and the clinical model and also performed better than two radiologists' prediction (all p < 0.05). In addition, predictive efficacy of the radiologists was improved under the assistance of the DLR model significantly.

Conclusion: The pretreatment US-based DLR model could hold promise as a clinical guidance for predicting NAC response of patients with breast cancer, thereby providing benefit of timely treatment strategy adjustment to potential poor NAC responders.

Key points: • Multicenter retrospective study showed that deep learning radiomics (DLR) model based on pretreatment ultrasound image and clinical parameter achieved satisfactory prediction of tumor response to neoadjuvant chemotherapy (NAC) in breast cancer. • The integrated DLR model could become an effective tool to guide clinicians in identifying potential poor pathological responders before chemotherapy. • The predictive efficacy of the radiologists was improved under the assistance of the DLR model.

Keywords: Breast neoplasms; Deep learning; Neoadjuvant chemotherapy; Ultrasonography.

Publication types

  • Multicenter Study

MeSH terms

  • Breast Neoplasms* / diagnostic imaging
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / pathology
  • Deep Learning*
  • Female
  • Humans
  • Neoadjuvant Therapy / methods
  • Retrospective Studies
  • Ultrasonography