Development of a PNA-LNA-LAMP Assay to Detect an SNP Associated with QoI Resistance in Erysiphe necator

Plant Dis. 2023 Oct;107(10):3238-3247. doi: 10.1094/PDIS-09-22-2027-RE. Epub 2023 Oct 25.

Abstract

The repetitive use of quinone outside inhibitor fungicides (QoIs, strobilurins; Fungicide Resistance Action Committee [FRAC] 11) to manage grape powdery mildew has led to development of resistance in Erysiphe necator. While several point mutations in the mitochondrial cytochrome b gene are associated with resistance to QoI fungicides, the substitution of glycine to alanine at codon 143 (G143A) has been the only mutation observed in QoI-resistant field populations. Allele-specific detection methods such as digital droplet PCR and TaqMan probe-based assays can be used to detect the G143A mutation. In this study, a peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA-LAMP) assay consisting of an A-143 reaction and a G-143 reaction, was designed for rapidly detecting QoI resistance in E. necator. The A-143 reaction amplifies the mutant A-143 allele faster than the wild-type G-143 allele, while the G-143 reaction amplifies the G-143 allele faster than the A-143 allele. Identification of resistant or sensitive E. necator samples was determined by which reaction had the shorter time to amplification. Sixteen single-spore QoI-resistant and -sensitive E. necator isolates were tested using both assays. Assay specificity in distinguishing the single nucleotide polymorphism (SNP) approached 100% when tested using purified DNA of QoI-sensitive and -resistant E. necator isolates. This diagnostic tool was sensitive to one-conidium equivalent of extracted DNA with an R2 value of 0.82 and 0.87 for the G-143 and A-143 reactions, respectively. This diagnostic approach was also evaluated against a TaqMan probe-based assay using 92 E. necator samples collected from vineyards. The PNA-LNA-LAMP assay detected QoI resistance in ≤30 min and showed 100% agreement with the TaqMan probe-based assay (≤1.5 h) for the QoI-sensitive and -resistant isolates. There was 73.3% agreement with the TaqMan probe-based assay when samples had mixed populations with both G-143 and A-143 alleles present. Validation of the PNA-LNA-LAMP assay was conducted in three different laboratories with different equipment. The results showed 94.4% accuracy in one laboratory and 100% accuracy in two other laboratories. The PNA-LNA-LAMP diagnostic tool was faster and required less expensive equipment relative to the previously developed TaqMan probe-based assay, making it accessible to a broader range of diagnostic laboratories for detection of QoI resistance in E. necator. This research demonstrates the utility of the PNA-LANA-LAMP for discriminating SNPs from field samples and its utility for point-of-care monitoring of plant pathogen genotypes.

Keywords: isothermal; powdery mildew; quinone outside inhibitors; single nucleotide polymorphisms.

MeSH terms

  • DNA
  • Erysiphe
  • Fungicides, Industrial* / pharmacology
  • Molecular Diagnostic Techniques
  • Nucleic Acid Amplification Techniques
  • Peptide Nucleic Acids*
  • Polymorphism, Single Nucleotide / genetics

Substances

  • Fungicides, Industrial
  • Peptide Nucleic Acids
  • DNA

Supplementary concepts

  • LAMP assay
  • Erysiphe necator