The importance of monitoring cerebral oxygenation in non brain injured patients

J Clin Monit Comput. 2023 Aug;37(4):943-949. doi: 10.1007/s10877-023-01002-8. Epub 2023 Apr 12.

Abstract

Over the past few years, the use of non-invasive neuromonitoring in non-brain injured patients has increased, as a result of the recognition that many of these patients are at risk of brain injury in a wide number of clinical scenarios and therefore may benefit from its application which allows interventions to prevent injury and improve outcome. Among these, are post cardiac arrest syndrome, sepsis, liver failure, acute respiratory failure, and the perioperative settings where in the absence of a primary brain injury, certain groups of patients have high risk of neurological complications. While there are many neuromonitoring modalities utilized in brain injured patients, the majority of those are either invasive such as intracranial pressure monitoring, require special skill such as transcranial Doppler ultrasonography, or intermittent such as pupillometry and therefore unable to provide continuous monitoring. Cerebral oximetry using Near infrared Spectroscopy, is a simple non invasive continuous measure of cerebral oxygenation that has been shown to be useful in preventing cerebral hypoxemia both within the intensive care unit and the perioperative settings. At present, current recommendations for standard monitoring during anesthesia or in the general intensive care concentrate mainly on hemodynamic and respiratory monitoring without specific indications regarding the brain, and in particular, brain oximetry. The aim of this manuscript is to provide an up-to-date overview of the pathophysiology and applications of cerebral oxygenation in non brain injured patients as part of non-invasive multimodal neuromonitoring in the early identification and treatment of neurological complications in this population.

Keywords: Cerebral oxygenation; Intensive care unit; Neuromonitoring; Operatory room.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain
  • Brain Injuries*
  • Cerebrovascular Circulation / physiology
  • Humans
  • Monitoring, Physiologic / methods
  • Nervous System Diseases*
  • Oximetry