Background: Metastatic cholangiocarcinoma (CC), a form of gastrointestinal cancer that originates from the bile ducts, cannot be cured by currently available therapies, and is associated with dismal prognosis. In a previous case report, adoptive transfer of autologous tumor infiltrating lymphocytes (TILs), the majority of which recognized a tumor-specific point mutation, led to a profound and durable cancer regression in a patient with metastatic CC. Thus, more effective treatment for patients with this disease may be developed by using TILs that target cancer-specific mutations, but also other genetic aberrations such as gene fusions. In this context, fusions that involve fibroblast growth factor receptor 2 (FGFR2) and function as oncogenes in a subset of patients with intrahepatic CC (ICC) represent particularly attractive targets for adoptive cell therapy. However, no study to date has explored whether FGFR2 fusions can be recognized by patients' T cells.
Method: To address whether FGFR2 fusions can be recognized by patients' T cells, we tested TILs from four patients with FGFR2 fusion-positive ICC for recognition of peptides and minigenes that represented the breakpoint regions of these fusions, which were unique to each of the four patients.
Results: We found that CD4+ TILs from one patient specifically recognized the breakpoint region of a unique FGFR2-TDRD1 (tudor domain-containing 1) fusion, and we isolated a T-cell receptor responsible for its recognition.
Conclusions: This finding suggests that FGFR2 fusion-reactive TILs can be isolated from some patients with metastatic ICC, and thus provides a rationale for future exploration of T cell-based therapy targeting FGFR2 fusions in patients with cancer. Furthermore, it augments the rationale for extending such efforts to other types of solid tumors hallmarked by oncogenic gene fusions.
Trial registration: ClinicalTrials.gov NCT00068003.
Keywords: Antigens; Gastrointestinal Neoplasms; Immunotherapy, Adoptive; Lymphocytes, Tumor-Infiltrating; Translational Medical Research.
© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.