Recent advances in next-generation sequencing (NGS) have enabled the detection of subclinical minute FLT3-ITD. We selected 74 newly diagnosed, cytogenetically normal acute myeloid leukaemia (AML) samples in which FLT3-ITD was not detected by gel electrophoresis. We sequenced them using NGS and found minute FLT3-ITDs in 19 cases. We compared cases with clinically relevant FLT3-ITD (n = 37), cases with minute FLT3-ITD (n = 19) and cases without detectable FLT3-ITD (n = 55). Molecular characteristics (location and length) of minute FLT3-ITD were similar to those of clinically relevant FLT3-ITD. Survival of cases with minute FLT3-ITD was similar to that of cases without detectable FLT3-ITD, whereas the relapse rate within 1 year after onset was significantly higher in cases with minute FLT3-ITD. We followed 18 relapsed samples of cases with clinically FLT3-ITD-negative at diagnosis. Two of 3 cases with minute FLT3-ITD relapsed with progression to clinically relevant FLT3-ITD. Two of 15 cases in which FLT3-ITD was not detected by NGS relapsed with the emergence of minute FLT3-ITD, and one of them showed progression to clinically relevant FLT3-ITD at the second relapse. We revealed the clonal dynamics of subclinical minute FLT3-ITD in clinically FLT3-ITD-negative AML. Minute FLT3-ITD at the initial AML can expand to become a dominant clone at relapse.
Keywords: Hokkaido Leukemia Net (HLN); acute myeloid leukaemia (AML); clonal diversity; minute FLT3-ITD; next-generation sequencing (NGS); relapse.
© 2023 British Society for Haematology and John Wiley & Sons Ltd.