Single Component Organic Photosensitizer with NIR-I Emission Realizing Type-I Photodynamic and GSH-Depletion Caused Ferroptosis Synergistic Theranostics

Adv Healthc Mater. 2023 Aug;12(21):e2300134. doi: 10.1002/adhm.202300134. Epub 2023 May 1.

Abstract

Phototheranostic agents have thrived as prominent tools for tumor luminescence imaging and therapies. Herein, a series of organic photosensitizers (PSs) with donor-acceptors (D-A) are elaborately designed and synthesized. In particular, PPR-2CN exhibits stable near infrared-I (NIR-I) emission, excellent free radicals generation and phototoxicity. Experimental analysis and calculations imply that a small singlet-triplet energy gap (ΔES1-T1 ) and large spin-orbit coupling (SOC) constant boost the intersystem crossing (ISC), leading to type-I photodynamic therapy (PDT). Additionally, the specific glutamate (Glu) and glutathione (GSH) consumption abilities of PPR-2CN inhibit the intracellular biosynthesis of GSH, resulting in redox dyshomeostasis and GSH-depletion causing ferroptosis. This work first realizes that single component organic PS could be simultaneously used as a type-I photodynamic agent and metal-free ferroptosis inducer for NIR-I imaging-guided multimodal synergistic therapy.

Keywords: ferroptosis; molecular engineering; phototheranostics integration; type-I photodynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ferroptosis*
  • Glutathione
  • Humans
  • Neoplasms* / drug therapy
  • Photochemotherapy* / methods
  • Photosensitizing Agents / pharmacology
  • Photosensitizing Agents / therapeutic use
  • Precision Medicine

Substances

  • Photosensitizing Agents
  • Glutathione