Coronary flow obstruction following transcatheter aortic valve-in-valve implantation (VIV-TAVI) is associated with a high mortality risk. The aim of this work was to quantify the coronary perfusion after VIV-TAVI in a high-risk aortic root anatomy. 3D printed models of small aortic root were used to simulate the implantation of a TAVI prosthesis (Portico 23) into surgical prostheses (Trifecta 19 and 21). The aortic root models were tested in a pulsatile in vitro bench setup with a coronary perfusion simulator. The tests were performed at baseline and post-VIV-TAVI procedure in aligned and misaligned commissural configurations under simulated hemodynamic rest and exercise conditions. The experimental design provided highly controllable and repeatable flow and pressure conditions. The left and right coronary mean flow did not differ significantly at pre- and post-VIV-TAVI procedure in any tested configurations. The commissural misalignment did not induce any significant alterations to the coronary flow. High-risk aortic root anatomy did not trigger coronary ostia obstruction or coronary flow alteration after transcatheter aortic valve implantation in a surgical bioprosthesis as shown from in-vitro flow loop tests.
Keywords: Aortic root; Aortic valve; Bench; Coronary flow; Coronary obstruction; In vitro; TAVI; TAVR; Valve-in-valve.
© 2023. The Author(s).