Aldehydes are attractive chemical targets both as end products in the flavors and fragrances industry and as synthetic intermediates due to their propensity for C-C bond formation. Here, we identify and address unexpected oxidation of a model collection of aromatic aldehydes, including many that originate from biomass degradation. When diverse aldehydes are supplemented to E. coli cells grown under aerobic conditions, as expected they are either reduced by the wild-type MG1655 strain or stabilized by a strain engineered for reduced aromatic aldehyde reduction (the E. coli RARE strain). Surprisingly, when these same aldehydes are supplemented to resting cell preparations of either E. coli strain, under many conditions we observe substantial oxidation. By performing combinatorial inactivation of six candidate aldehyde dehydrogenase genes in the E. coli genome using multiplexed automatable genome engineering (MAGE), we demonstrate that this oxidation can be substantially slowed, with greater than 50% retention of 6 out of 8 aldehydes when assayed 4 h after their addition. Given that our newly engineered strain exhibits reduced oxidation and reduction of aromatic aldehydes, we dubbed it the E. coli ROAR strain. We applied the new strain to resting cell biocatalysis for two kinds of reactions - the reduction of 2-furoic acid to furfural and the condensation of 3-hydroxybenzaldehyde and glycine to form a non-standard β-hydroxy-α-amino acid. In each case, we observed substantial improvements in product titer 20 h after reaction initiation (9-fold and 10-fold, respectively). Moving forward, the use of this strain to generate resting cells should allow aldehyde product isolation, further enzymatic conversion, or chemical reactivity under cellular contexts that better accommodate aldehyde toxicity.
Keywords: Aldehyde; Biocatalysis; Biosynthesis; Dehydrogenase; Genome engineering; Oxidation; Stability.
Copyright © 2023 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.