When replacing a damaged artificial hip joint, treatment involves using antibiotic-laced bone cement as a spacer. One of the most popular materials used for spacers is PMMA; however, it has limitations in terms of mechanical and tribological properties. To overcome such limitations, the current paper proposes utilizing a natural filler, coffee husk, as a reinforcement for PMMA. The coffee husk filler was first prepared using the ball-milling technique. PMMA composites with varying weight fractions of coffee husk (0, 2, 4, 6, and 8 wt.%) were prepared. The hardness was measured to estimate the mechanical properties of the produced composites, and the compression test was utilized to estimate the Young modulus and compressive yield strength. Furthermore, the tribological properties of the composites were evaluated by measuring the friction coefficient and wear by rubbing the composite samples against stainless steel and cow bone counterparts under different normal loads. The wear mechanisms were identified via scanning electron microscopy. Finally, a finite element model for the hip joint was built to investigate the load-carrying capacity of the composites under human loading conditions. The results show that incorporating coffee husk particles can enhance both the mechanical and tribological properties of the PMMA composites. The finite element results are consistent with the experimental findings, indicating the potential of the coffee husk as a promising filler material for enhancing the performance of PMMA-based biomaterials.
Keywords: PMMA composite; artificial hip joint; biocomposites; coffee husk filler.