Antimicrobial resistance is a global health threat and efforts to mitigate it is warranted, thus the need for local antibiograms to improve stewardship. This study highlights the process that was used to develop an antibiogram to monitor resistance at a secondary-level health facility to aid empirical clinical decision making in a sub-Saharan African county. This retrospective cross-sectional descriptive study used 3 years of cumulative data from January 2016 to December 2018. Phenotypic data was manually imputed into WHONET and the cumulative antibiogram constructed using standardized methodologies according to CLSI M39-A4 guidelines. Pathogens were identified by standard manual microbiological methods and antimicrobial susceptibility testing was performed using Kirby-Bauer disc diffusion method according to CLSI M100 guidelines. A total of 14,776 non-duplicate samples were processed of which 1163 (7.9%) were positive for clinically significant pathogens. Among the 1163 pathogens, E. coli (n = 315) S. aureus (n = 232), and K. pneumoniae (n = 96) were the leading cause of disease. Overall, the susceptibility for E. coli and K. pneumoniae from all samples were: trimethoprim-sulfamethoxazole (17% and 28%), tetracycline (26% and 33%), gentamicin (72% and 46%), chloramphenicol (76 and 60%), and ciprofloxacin (69% and 59%), and amoxicillin/clavulanic (77% and 54%) respectively. Extended spectrum beta-lactamase (ESBL) resistance was present in 23% (71/315) vs. 35% (34/96) respectively. S. aureus susceptibility for methicillin was 99%. This antibiogram has shown that improvement in combination therapy is warranted in The Gambia.
Keywords: Escherichia coli (E. coli); Klebsiella pnuemonaie (K. pneumoniae); Staphylococcus aureus (S. aureus); antimicrobial resistance (AMR); bacteraemia; cumulative antibiogram; infection prevention and control (IPC); low- and middle-income countries (LMICs); urinary tract infection (UTI).