A novel plasma-sprayed Ti4O7/carbon nanotubes/Al2O3 coating with bifunctional microwave application

J Colloid Interface Sci. 2023 Sep:645:165-175. doi: 10.1016/j.jcis.2023.04.145. Epub 2023 May 3.

Abstract

High-performance microwave absorption coatings are critically required in the stealth defense system of military platforms. Regrettably, just optimizing the property but neglecting the application feasibility seriously inhibits its practical application in the field of microwave absorption. To face this challenge, the Ti4O7/carbon nanotubes (CNTs)/Al2O3 coatings were successfully fabricated by a plasma-sprayed method. For the different oxygen vacancy-induced Ti4O7 coatings, the enhanced ε' and ε'' values in the frequency of X-band is due to the synergistic manipulation of conductive path, defects and interfacial polarization. The optimal reflection loss of Ti4O7/CNTs/Al2O3 sample (0 wt% CNTs) is -55.7 dB (8.9 GHz of 2.41 mm), while the electromagnetic interference shielding effectiveness of Ti4O7/CNTs/Al2O3 sample (5 wt% CNTs) increases to 20.5 dB as the enhanced electrical conductivity. In special, the flexural strength of Ti4O7/CNTs/Al2O3 coatings first increases from 48.59 MPa (0 wt% CNTs) to 67.13 MPa (2.5 wt% CNTs) and then decreases to 38.31 MPa (5 wt% CNTs), demonstrating that an appropriate amount of CNTs evenly dispersed in the Ti4O7/Al2O3 ceramic matrix can effectively play the role of CNTs as the strengthening phase of the coatings. This research will provide a strategy by tailoring synergistic effect of dielectric loss and conduction loss for oxygen vacancy-mediated Ti4O7 material to broaden the application of absorbing or shielding ceramic coatings.

Keywords: Coatings; Interfacial polarization; Microwave absorption; Oxygen vacancies; Plasma spraying.