MetaTiME integrates single-cell gene expression to characterize the meta-components of the tumor immune microenvironment

Nat Commun. 2023 May 6;14(1):2634. doi: 10.1038/s41467-023-38333-8.

Abstract

Recent advances in single-cell RNA sequencing have shown heterogeneous cell types and gene expression states in the non-cancerous cells in tumors. The integration of multiple scRNA-seq datasets across tumors can indicate common cell types and states in the tumor microenvironment (TME). We develop a data driven framework, MetaTiME, to overcome the limitations in resolution and consistency that result from manual labelling using known gene markers. Using millions of TME single cells, MetaTiME learns meta-components that encode independent components of gene expression observed across cancer types. The meta-components are biologically interpretable as cell types, cell states, and signaling activities. By projecting onto the MetaTiME space, we provide a tool to annotate cell states and signature continuums for TME scRNA-seq data. Leveraging epigenetics data, MetaTiME reveals critical transcriptional regulators for the cell states. Overall, MetaTiME learns data-driven meta-components that depict cellular states and gene regulators for tumor immunity and cancer immunotherapy.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Epigenesis, Genetic*
  • Epigenomics
  • Gene Expression
  • Immunotherapy
  • Single-Cell Analysis
  • Tumor Microenvironment* / genetics