Multiplex Immunochemistry/Immunofluorescence (mIHC/IF) aims to visualise multiple biomarkers in a single tissue section and is especially powerful when used on slide scanners coupled with digital analysis tools. mIHC/IF is commonly employed in immuno-oncology to characterise features of the tumour microenvironment (TME) and correlate them with clinical parameters to guide prognostication and therapy. However, mIHC/IF can be applied to a wide range of organisms in any physiological or disease context. Recent innovation has extended the number of markers that can be detected using slide scanners well beyond the 3-4 markers typically reported in traditional fluorescence microscopy. However, these methods often require sequential antibody staining and stripping, and are not compatible with frozen tissue sections. Using fluorophore-conjugated antibodies, we have established a simple mIHC/IF imaging workflow that enables simultaneous staining and detection of seven markers in a single section of frozen tissue. Coupled with automated whole slide imaging and digital quantification, our data efficiently revealed the tumour-immune complexity in metastatic melanoma. Computational image analysis quantified the immune and stromal cell populations present in the TME as well as their spatial interactions. This imaging workflow can also be performed with an indirect labelling panel consisting of primary and secondary antibodies. Our new methods, combined with digital quantification, will provide a valuable tool for high-quality mIHC/IF assays in immuno-oncology research and other translational studies, especially in circumstances where frozen sections are required for detection of particular markers, or for applications where frozen sections may be preferred, such as spatial transcriptomics.
Keywords: Digital pathology; Multiplex immunochemistry; Multiplex immunofluorescence.
Copyright © 2023. Published by Elsevier B.V.