Introduction: Tacrolimus, an immunosuppressive drug prescribed to a majority of organ transplant recipients is nephrotoxic, through still unclear mechanisms. This study on a lineage of proximal tubular cells using a multi-omics approach aims to detect off-target pathways modulated by tacrolimus that can explain its nephrotoxicity.
Methods: LLC-PK1 cells were exposed to 5 µM of tacrolimus for 24 h in order to saturate its therapeutic target FKBP12 and other high-affine FKBPs and favour its binding to less affine targets. Intracellular proteins and metabolites, and extracellular metabolites were extracted and analysed by LC-MS/MS. The transcriptional expression of the dysregulated proteins PCK-1, as well as of the other gluconeogenesis-limiting enzymes FBP1 and FBP2, was measured using RT-qPCR. Cell viability with this concentration of tacrolimus was further checked until 72 h.
Results: In our cell model of acute exposure to a high concentration of tacrolimus, different metabolic pathways were impacted including those of arginine (e.g., citrulline, ornithine) (p < 0.0001), amino acids (e.g., valine, isoleucine, aspartic acid) (p < 0.0001) and pyrimidine (p < 0.01). In addition, it induced oxidative stress (p < 0.01) as shown by a decrease in total cell glutathione quantity. It impacted cell energy through an increase in Krebs cycle intermediates (e.g., citrate, aconitate, fumarate) (p < 0.01) and down-regulation of PCK-1 (p < 0.05) and FPB1 (p < 0.01), which are key enzymes in gluconeogenesis and acid-base balance control.
Discussion: The variations found using a multi-omics pharmacological approach clearly point towards a dysregulation of energy production and decreased gluconeogenesis, a hallmark of chronic kidney disease which may also be an important toxicity pathway of tacrolimus.
Keywords: Kidney; Mechanism; Omics; Tacrolimus; Tacrolimus (PubMed CID: 445643); Toxicity; Transplantation.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.