Background: Real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) have been developed to detect minute amounts of amyloidogenic proteins via amplification techniques and have been used to detect misfolded α-synuclein (αSyn) aggregates in the cerebrospinal fluid (CSF) and other source materials of patients with Parkinson's Disease and other synucleinopathies.
Objectives: The aim of this systematic review and meta-analysis was to evaluate the diagnostic accuracy of αSyn seed amplification assays (αSyn-SAAs), including RT-QuIC and PMCA, using CSF as source material to differentiate synucleinopathies from controls.
Methods: The electronic MEDLINE database PubMed was searched for relevant articles published until June 30, 2022. Study quality assessment was performed using the QUADAS-2 toolbox. A random effects bivariate model was exploited for data synthesis.
Results: Our systematic review identified 27 eligible studies according to the predefined inclusion criteria, of which 22 were included in the final analysis. Overall, 1855 patients with synucleinopathies and 1378 non-synucleinopathies as control subjects were included in the meta-analysis. The pooled sensitivity and specificity to differentiate synucleinopathies from controls with αSyn-SAA were 0.88 (95% CI, 0.82-0.93) and 0.95 (95% CI, 0.92-0.97), respectively. Evaluating the diagnostic performance of RT-QuIC in a subgroup analysis for the detection of patients with multiple system atrophy the pooled sensitivity decreased to 0.30 (95% CI, 0.11-0.59).
Conclusions: While our study clearly demonstrated a high diagnostic performance of RT-QuIC and PMCA for differentiating synucleinopathies with Lewy bodies from controls, results for the diagnosis of multiple system atrophy were less robust.
Keywords: alpha‐synuclein; biomarker; protein misfolding cyclic amplification (PMCA); real‐time quaking‐induced conversion (RT‐QuIC); synucleinopathy.
© 2023 The Authors. Movement Disorders Clinical Practice published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.