Selective chemogenetic inactivation of corticoaccumbal projections disrupts trait choice impulsivity

Neuropsychopharmacology. 2023 Nov;48(12):1821-1831. doi: 10.1038/s41386-023-01604-5. Epub 2023 May 19.

Abstract

Impulsive choice has enduring trait-like characteristics and is defined by preference for small immediate rewards over larger delayed ones. Importantly, it is a determining factor in the development and persistence of substance use disorder (SUD). Emerging evidence from human and animal studies suggests frontal cortical regions exert influence over striatal reward processing areas during decision-making in impulsive choice or delay discounting (DD) tasks. The goal of this study was to examine how these circuits are involved in decision-making in animals with defined trait impulsivity. To this end, we trained adolescent male rats to stable behavior on a DD procedure and then re-trained them in adulthood to assess trait-like, conserved impulsive choice across development. We then used chemogenetic tools to selectively and reversibly target corticostriatal projections during performance of the DD task. The prelimbic region of the medial prefrontal cortex (mPFC) was injected with a viral vector expressing inhibitory designer receptors exclusively activated by designer drugs (Gi-DREADD), and then mPFC projections to the nucleus accumbens core (NAc) were selectively suppressed by intra-NAc administration of the Gi-DREADD actuator clozapine-n-oxide (CNO). Inactivation of the mPFC-NAc projection elicited a robust increase in impulsive choice in rats with lower vs. higher baseline impulsivity. This demonstrates a fundamental role for mPFC afferents to the NAc during choice impulsivity and suggests that maladaptive hypofrontality may underlie decreased executive control in animals with higher levels of choice impulsivity. Results such as these may have important implications for the pathophysiology and treatment of impulse control, SUDs, and related psychiatric disorders.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Animals
  • Choice Behavior / physiology
  • Humans
  • Impulsive Behavior* / physiology
  • Male
  • Nucleus Accumbens / physiology
  • Prefrontal Cortex* / physiology
  • Rats
  • Reward