SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex

Plant J. 2023 Sep;115(5):1193-1213. doi: 10.1111/tpj.16312. Epub 2023 Jun 28.

Abstract

Plants have evolved an extensive specialized secondary metabolism. The colorful flavonoid anthocyanins, for example, not only stimulate flower pollination and seed dispersal, but also protect different tissues against high light, UV and oxidative stress. Their biosynthesis is highly regulated by environmental and developmental cues and induced by high sucrose levels. Expression of the biosynthetic enzymes involved is controlled by a transcriptional MBW complex, comprising (R2R3) MYB- and bHLH-type transcription factors and the WD40 repeat protein TTG1. Anthocyanin biosynthesis is not only useful, but also carbon- and energy-intensive and non-vital. Consistently, the SnRK1 protein kinase, a metabolic sensor activated in carbon- and energy-depleting stress conditions, represses anthocyanin biosynthesis. Here we show that Arabidopsis SnRK1 represses MBW complex activity both at the transcriptional and post-translational level. In addition to repressing expression of the key transcription factor MYB75/PAP1, SnRK1 activity triggers MBW complex dissociation, associated with loss of target promoter binding, MYB75 protein degradation and nuclear export of TTG1. We also provide evidence for direct interaction with and phosphorylation of multiple MBW complex proteins. These results indicate that repression of expensive anthocyanin biosynthesis is an important strategy to save energy and redirect carbon flow to more essential processes for survival in metabolic stress conditions.

Keywords: Arabidopsis; MBW complex; SnRK1; anthocyanin biosynthesis; post-translation modification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anthocyanins / metabolism
  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Gene Expression Regulation, Plant
  • Phosphorylation
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Anthocyanins
  • Arabidopsis Proteins
  • Transcription Factors
  • Basic Helix-Loop-Helix Transcription Factors
  • TTG1 protein, Arabidopsis
  • SnRK1 protein, Arabidopsis
  • Protein Serine-Threonine Kinases