Identification and characterisation of MdUGT78T2 as a galactosyltransferase with dual activity on flavonol and anthocyanidin substrates in red-skinned apple fruit (Malus domestica L.)

Food Chem. 2023 Oct 30:424:136388. doi: 10.1016/j.foodchem.2023.136388. Epub 2023 May 16.

Abstract

Anthocyanidin and flavonol glycosides have been linked to the health-promoting effects associated with apple consumption. However, very few enzymes involved in flavonoid glycosylation have been characterised to date. Here, we present the identification and phylogenetic analysis of 234 putative glycosyltransferases involved in flavonoid biosynthesis, and detail the biochemical and structural characterisation of MdUGT78T2 as a strict galactosyltransferase involved in the formation of quercetin-3-O-galactoside and cyanidin-3-O-galactoside, the major glycoconjugates of flavonoids in apple. The enzyme is also active on other flavonoids but with a lower catalytic efficiency. Our data, complemented with gene expression analysis suggest that MdUGT78T2 synthesises the glycoconjugates at both the early and late stages of fruit development. This newly discovered type of catalytic activity can potentially be exploited for in vitro modification of flavonoids to increase their stability in food products and to modify apple fruits and other commercial crops through breeding approaches to enhance their health benefits.

Keywords: Anthocyanidins; Apple; Biochemical characterization; Flavonols; Glycosyltransferase; Protein structure modelling.

MeSH terms

  • Anthocyanins / analysis
  • Flavonoids / analysis
  • Flavonols / analysis
  • Fruit / chemistry
  • Galactosyltransferases / analysis
  • Galactosyltransferases / genetics
  • Galactosyltransferases / metabolism
  • Malus* / chemistry
  • Phylogeny
  • Plant Breeding

Substances

  • Anthocyanins
  • Flavonoids
  • Flavonols
  • Galactosyltransferases