Aortic valve calcification commonly occurs in patients with chronic kidney disease (CKD). However, the regulatory functions of microRNAs (miRNAs/miRs) in the osteogenic differentiation of human aortic valvular interstitial cells (hAVICs) in patients with CKD remain largely unknown. This study aimed to explore the functional role and underlying mechanisms of miR-93-5p and miR-374a-5p in the osteogenic differentiation of hAVICs. For this purpose, hAVICs calcification was induced with high-calcium/high-phosphate medium and the expression levels of miR-93-5p and miR-374a-5p were determined using bioinformatics assay. Alizarin red staining, intracellular calcium content, and alkaline phosphatase activity were used to evaluate calcification. The expression levels of bone morphogenetic protein-2 (BMP2), runt-related transcription factor 2 (Runx2), and phosphorylated (p)-Smad1/5 were detected by luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot analysis. The results revealed that the expression levels of miR-93-5p and miR-374a-5p were significantly decreased in hAVICs in response to high-calcium/high-phosphate medium. The overexpression of miR-93-5p and miR-374a-5p effectively suppressed the high-calcium/high-phosphate-induced calcification and osteogenic differentiation makers. Mechanistically, the overexpression of miR-93-5p and miR-374a-5p inhibits osteogenic differentiation by regulating the BMP2/Smad1/5/Runx2 signaling pathway. Taken together, this study indicates that miR-93-5p and miR-374a-5p suppress the osteogenic differentiation of hAVICs associated with calcium-phosphate metabolic dyshomeostasis through the inhibition of the BMP2/Smad1/5/Runx2 signaling pathway.
Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.