Cognitive impairment is a common and debilitating feature of multiple sclerosis (MS), and the dysregulation of synaptic plasticity is one of its direct causes. Long non-coding RNAs (lncRNAs) have been shown to play a role in synaptic plasticity, but their role in cognitive impairment in MS has not been fully explored. In this study, using quantitative real-time PCR, we examined the relative expression of two specific lncRNAs, BACE1-AS and BC200, in the serum of two cohorts of MS patients with and without cognitive impairment. Both lncRNAs were overexpressed in both cognitively impaired and non-cognitively impaired MS patients, with consistently higher levels in the cohort with cognitive impairment. We also found a strong positive correlation between the expression levels of these two lncRNAs. Notably, BACE1-AS was consistently higher in the remitting cases of both relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) groups than in the respective relapse cases of the same subtype, with the SPMS-Remitting group of cognitively impaired MS patients showing the highest expression of BACE1-AS among all MS groups. Additionally, we observed that the primary progressive MS (PPMS) group had the highest expression of BC200 in both cohorts of MS. Furthermore, we developed a model called Neuro_Lnc-2, which showed better diagnostic performance than either BACE1-AS or BC200 alone in predicting MS. Our findings suggest that these two lncRNAs may have a significant impact on the pathogenesis of the progressive types of MS and on the cognitive function of the patients. Future research is required to confirm these findings.
Keywords: BACE1-AS; BC200/BCYRN1; Cognitive impairment; Multiple Sclerosis; Synaptic plasticity.
Copyright © 2023 Elsevier B.V. All rights reserved.