High-yield ligation-free assembly of DNA constructs with nucleosome positioning sequence repeats for single-molecule manipulation assays

J Biol Chem. 2023 Jul;299(7):104874. doi: 10.1016/j.jbc.2023.104874. Epub 2023 May 29.

Abstract

Force and torque spectroscopy have provided unprecedented insights into the mechanical properties, conformational transitions, and dynamics of DNA and DNA-protein complexes, notably nucleosomes. Reliable single-molecule manipulation measurements require, however, specific and stable attachment chemistries to tether the molecules of interest. Here, we present a functionalization strategy for DNA that enables high-yield production of constructs for torsionally constrained and very stable attachment. The method is based on two subsequent PCRs: first ∼380 bp long DNA strands are generated that contain multiple labels, which are used as "megaprimers" in a second PCR to generate ∼kbp long double-stranded DNA constructs with multiple labels at the respective ends. To achieve high-force stability, we use dibenzocyclooctyne-based click chemistry for covalent attachment to the surface and biotin-streptavidin coupling to the bead. The resulting tethers are torsionally constrained and extremely stable under load, with an average lifetime of 70 ± 3 h at 45 pN. The high yield of the approach enables nucleosome reconstitution by salt dialysis on the functionalized DNA, and we demonstrate proof-of-concept measurements on nucleosome assembly statistics and inner turn unwrapping under force. We anticipate that our approach will facilitate a range of studies of DNA interactions and nucleoprotein complexes under forces and torques.

Keywords: DNA; click chemistry; force spectroscopy; magnetic tweezers; nucleosomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biophysical Phenomena
  • DNA* / chemistry
  • Mechanical Phenomena
  • Nucleosomes*
  • Polymerase Chain Reaction

Substances

  • Nucleosomes
  • DNA