Carbonyl compounds are among the most important flavor substances that affect the taste of Baijiu. However, high coverage analysis of carbonyl compounds is obstructed due to the poor ionization efficiency of these compounds. Here we report a chlorine isotope labeling-assisted ultrahigh-performance liquid chromatography-high resolution mass spectrometry-based method (CIL-UHPLCHRMS) for profiling and annotation of carbonyl compounds in sauce flavored-Baijiu Daqu. 4-Chloro-2-hydrazinylpyridine was demonstrated to be a good labeling reagent that could achieve highly sensitive profiling and high-coverage screening of carbonyl compounds in the absence of heavy isotope labeling reagents. In the analysis of eight carbonyl standards representing different carbonyl categories, l-(-)-fucose, 2-carboxybenzaldehyde, 2-hydroxyacetophenone and heptan-2-one could be ionized only after labeling and MS signals were significantly increased for other 4 standards with an enhancement factor ranging from 181-fold for 3-methoxysalicylaldehyde to 3141-fold for tridecan-2-one. The annotation was achieved based on multidimensional information including MS1, predicted tR, in silico MS/MS and manually annotated fragments. In total, 487 carbonyl compounds were detected in Baijiu Daqu, among which, 314 (64.5%) of them were positively or putatively identified. The outcome of the linearity (with a linear range of 2, 3 orders of magnitude), precision (less than 10%), and limit of detection (varied from 0.07 to 0.10 nM) indicated that the method was adequate for profiling carbonyl compounds in complex biological samples. The established method was successfully applied to study carbonyl compounds in Baijiu Daqu with different colors and different seasons. Taken collectively, the present work provides an effective, simple and economic strategy for comprehensive analysis of carbonyl compounds in complex matrix samples.
Keywords: Carbonyl compounds; Chlorine isotope labeling; Sauce flavored-Baijiu Daqu; Ultrahigh-performance liquid chromatography-high resolution mass spectrometry.
Copyright © 2023. Published by Elsevier B.V.