As the classification of kinase-driven spindle cell tumors continues to evolve, we describe the first series of pediatric mesenchymal tumors harboring FGFR1 gene fusions that share histologic overlap with infantile fibrosarcoma and "NTRK-rearranged" spindle cell neoplasms. Herein, we present three cases of FGFR1-rearranged pediatric mesenchymal tumors, including one case with FGFR1::PARD6B gene fusion and two cases with FGFR1::EBF2 gene fusion. The tumors involved infants ranging from 3 to 9 months in age with a male-to-female ratio of 2:1. All tumors involved the deep soft tissue of the gluteal, pelvic, or perirectal region. Histologically, the tumors comprised a cellular spindle cell neoplasm with primitive stellate cells, focal myxoid stroma, focal epithelioid features, no necrosis, and occasional mitotic figures (2-6 per 10 high-power field). By immunohistochemistry, the neoplastic cells focally expressed CD34 but lacked expression of S100 protein, SMA, desmin, myogenin, MyoD1, pan-TRK, and ALK. These three cases, including a case with long-term clinical follow-up, demonstrate that FGFR1 fusions occur in a subset of newly described pediatric kinase-driven mesenchymal tumors with locally aggressive behavior. Importantly, knowledge of these genetic alterations in this spectrum of pediatric tumors is key for diagnostic and targeted therapeutic purposes.
Keywords: CD34; FGFR1; NTRK; S100 protein; fibrosarcoma; spindle cell.
© 2023 The Authors. Genes, Chromosomes and Cancer published by Wiley Periodicals LLC.