The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestos-like morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure.
Keywords: Asbestos; Elongate mineral fibre; Fibrous antigorite; Hazard assessment; NOA hazard.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.