Several studies highlighted a significant role of specific miRNA as diagnostic and prognostic biomarkers for acute ischemic stroke. The aim of this work was to study micro-RNA 125b-5p level in patients with acute ischemic stroke in relation to stroke etiology, risk factors, severity and outcome. This case-control study was conducted on 40 patients with acute ischemic stroke eligible for receiving rt-PA and 40 age and sex matched healthy controls, Patients were submitted to neurological and radiological assessment. Functional outcome after 3 months was assessed using the modified Rankin Scale (mRS). Plasma micro-RNA 125b-5p levels were measured for both patients and control groups by quantitative real time PCR. MiRNA-125b-5p was extracted from the plasma samples then Real-time quantitative reversed transcription PCR (RT-qPCR) analysis was done. To analyze miRNA-125b-5p expression in plasma, the ∆Cq value of miRNA-125b-5p was calculated by subtracting Cq of miRNA-125b-5p from the average Cq of MiRNA RNU6B. Stroke patients had significantly higher circulating micro-RNA 125b-5p levels in comparison to healthy controls (P value = 0.01). The circulating levels of micro-RNA 125b-5p were positively correlated with stroke severity assessed by National Institutes of Health Stroke Scale (NIHSS) and infarction size. Stroke patients with poor outcome had significantly higher circulating levels of micro-RNA 125b-5p in comparison to those with good outcome (P value ≤ 0.001). The circulating levels of micro-RNA 125b-5p were significantly higher in patients who developed complications after receiving rt-PA (P value ≤ 0.001). Logistic regression model revealed that each unit increase in micro-RNA125b-5p decreased the odds of good outcome by 0.095 (95% CI 0.016-0.58, P value = 0.011). Plasma micro-RNA 125b-5p is significantly elevated is ischemic stroke patients. It is positively correlated with stroke severity and strongly associated with poor outcome and complications after thrombolytic therapy.
Keywords: Micro-RNA 125b-5p; NIHSS; Rt-PA; Stroke; mRS.
© 2023. The Author(s).