Background: Per- and polyfluoroalkyl substances (PFAS) may disrupt mammary gland development and function; thereby inhibiting milk supply and breastfeeding duration. However, conclusions on the potential effects of PFAS and breastfeeding duration are limited by prior epidemiologic studies that inconsistently adjusted for past cumulative breastfeeding duration and by a lack of examination of the joint effects of PFAS mixtures.
Methods: In Project Viva, a longitudinal cohort that enrolled pregnant participants from 1999 to 2002 in the greater Boston, MA area, we studied 1079 women who ever attempted to lactate. We investigated associations of plasma concentrations of select PFAS in early pregnancy (mean: 10.1 weeks gestation) with breastfeeding termination by 9 months, after which women typically cite self-weaning as the reason for terminating breastfeeding. We used Cox regression for single-PFAS models and quantile g-computation for mixture models, adjusting for sociodemographics, prior breastfeeding duration, and weeks of gestation at the time of blood draw.
Results: We detected 6 PFAS [perfluorooctane sulfonate; perfluorooctanoate (PFOA); perfluorohexane sulfonate; perfluorononanoate; 2-(N-ethyl-perfluorooctane sulfonamido) acetate (EtFOSAA); 2-(N-methyl-perfluorooctane sulfonamide) acetate (MeFOSAA)] in >98 % of samples. Sixty percent of lactating women terminated breastfeeding by 9 months postpartum. Women with higher plasma concentrations of PFOA, EtFOSAA, and MeFOSAA had a greater hazard of terminating breastfeeding in the first 9 months postpartum [HR (95 % CI) per doubling concentration: 1.20 (1.04, 1.38) for PFOA; 1.10 (1.01, 1.20) for EtFOSAA; 1.18 (1.08, 1.30) for MeFOSAA]. In the quantile g-computation model, simultaneously increasing all PFAS in the mixture by one quartile was associated with 1.17 (95 % CI: 1.05, 1.31) greater hazard of terminating breastfeeding in the first 9 months.
Conclusion: Our findings suggest that exposure to PFAS may be associated with reduced breastfeeding duration and draw further attention to environmental chemicals that may dysregulate human lactation.
Keywords: Breastfeeding; Lactation; Per- and polyfluoroalkyl substances.
Copyright © 2023 Elsevier B.V. All rights reserved.