Endoleaks are the most common complication after endovascular aortic repair (EVAR). Their correct identification is one of the main objectives of surveillance protocols after EVAR. So far, computed tomography angiography (CTA), contrast-enhanced (CEUS) and Duplex ultrasound (DUS), as well as magnetic resonance angiography, have been investigated for their ability to detect endoleaks. In general, all technologies have distinct benefits and disadvantages, with CTA and CEUS emerging as the reference standard for surveillance after EVAR. However, they are both contrast-enhancer-dependent, and CTA additionally exposes patients to ionizing radiation. In the present study, we investigated B-Flow, a type of coded-excitation ultrasound that was specifically designed to optimize the visualization of blood flow, for its ability to detect endoleaks, and compared its performance to CEUS, CTA, and DUS. In total, 34 patients were included in the analysis that accumulated in 43 distinct B-Flow investigations. They underwent a total of 132 imaging investigations. Agreement between B-Flow and other imaging modalities was high (>80.0%), while inter-method reliability can be interpreted as good. However, with B-Flow, six and one endoleaks would have been missed compared to CEUS and CTA, respectively. Regarding endoleak classification, all metrics were lower but retained an adequate level of comparison. In a subset of patients requiring intervention, B-Flow had 100% accuracy regarding both endoleak detection and classification. Ultrasonography enables endoleak detection and classification without the need for pharmaceutical contrast enhancement or radiation. Ultrasound coded-excitation imaging in the application of B-Flow could further simplify surveillance after EVAR by offering adequate accuracy without requiring intravenous contrast enhancement. Our findings may promote subsequent investigations of coded-excitation imaging for endoleak detection and classification in the surveillance after EVAR.
Keywords: B-Flow; EVAR; endoleak; endovascular aortic repair; imaging; ultrasound.