A link between maternal anxiety during pregnancy and adverse socio-emotional outcomes in childhood has been consistently sustained on the very early neurodevelopmental alteration of structural pathways between fetal limbic and cortical brain regions. In this study, we provide follow-up evidence for a feed-forward model linking (i) maternal anxiety, (ii) fetal functional neurodevelopment, (iii) neonatal functional network organization with (iv) socio-emotional neurobehavioral development in early childhood. Namely, we investigate a sample of 16 mother-fetus dyads and show how a maternal state-trait anxiety profile with pregnancy-specific worries can significantly influence functional synchronization patterns between regions of the fetal limbic system (i.e., hippocampus and amygdala) and the neocortex, as assessed through resting-state functional magnetic resonance imaging. Generalization of the findings was supported by leave-one-out cross-validation. We further show how this maternal-fetal cross-talk propagates to functional network topology in the neonate, specifically targeting connector hubs, and further maps onto socio-emotional profiles, assessed through Bayley-III socio-emotional scale in early childhood (i.e., in the 12-24 months range). Based on this evidence, we put forward the hypothesis of a "Maternal-Fetal-Neonatal Anxiety Backbone", through which neurobiological changes driven by maternal anxiety could trigger a divergence in the establishment of a cognitive-emotional development blueprint, in terms of the nascent functional homeostasis between bottom-up limbic and top-down higher-order neuronal circuitry.
Keywords: anxiety; fMRI; neurodevelopment; pregnancy; socio-emotional.
© 2023 The Authors. Journal of Neuroscience Research published by Wiley Periodicals LLC.