Background: Interpretation of cardiopulmonary exercise testing (CPET) results requires thorough understanding of test confounders such as anthropometrics, comorbidities and medication. Here, we comprehensively assessed the clinical determinants of cardiorespiratory fitness and its components in a heterogeneous patient sample.
Methods: We retrospectively collected medical and CPET data from 2320 patients (48.2% females) referred for cycle ergometry at the University Hospital Leuven, Belgium. We assessed clinical determinants of peak CPET indexes of cardiorespiratory fitness (CRF) and its hemodynamic and ventilatory components using stepwise regression and quantified multivariable-adjusted differences in indexes between cases and references.
Results: Lower peak load and peak O2 uptake were related to: higher age, female sex, lower body height and weight, and higher heart rate; to the intake of beta blockers, analgesics, thyroid hormone replacement and benzodiazepines; and to diabetes mellitus, chronic kidney disease, non-ST elevation myocardial infarction and atrial fibrillation (p < 0.05 for all). Lower peak load also correlated with obstructive pulmonary diseases. Stepwise regression revealed associations of hemodynamic and ventilatory indexes (including heart rate, O2 pulse, systolic blood pressure and ventilation at peak exercise and ventilatory efficiency) with age, sex, body composition and aforementioned diseases and medications. Multivariable-adjusted differences in CPET metrics between cases and controls confirmed the associations observed.
Conclusion: We described known and novel associations of CRF components with demographics, anthropometrics, cardiometabolic and pulmonary diseases and medication intake in a large patient sample. The clinical implications of long-term noncardiovascular drug intake for CPET results require further investigation.
Keywords: cardiopulmonary exercise test; cardiorespiratory fitness; clinical determinants; cycle ergometry; exercise capacity.
© 2023 Scandinavian Society of Clinical Physiology and Nuclear Medicine.