Investigation of the Inhibition Mechanism of Xanthine Oxidoreductase by Oxipurinol: A Computational Study

J Chem Inf Model. 2023 Jul 10;63(13):4190-4206. doi: 10.1021/acs.jcim.3c00624. Epub 2023 Jun 15.

Abstract

Xanthine oxidoreductase (XOR) is an enzyme found in various organisms. It converts hypoxanthine to xanthine and urate, which are crucial steps in purine elimination in humans. Elevated uric acid levels can lead to conditions like gout and hyperuricemia. Therefore, there is significant interest in developing drugs that target XOR for treating these conditions and other diseases. Oxipurinol, an analogue of xanthine, is a well-known inhibitor of XOR. Crystallographic studies have revealed that oxipurinol directly binds to the molybdenum cofactor (MoCo) in XOR. However, the precise details of the inhibition mechanism are still unclear, which would be valuable for designing more effective drugs with similar inhibitory functions. In this study, molecular dynamics and quantum mechanics/molecular mechanics calculations are employed to investigate the inhibition mechanism of XOR by oxipurinol. The study examines the structural and dynamic effects of oxipurinol on the pre-catalytic structure of the metabolite-bound system. Our results provide insights on the reaction mechanism catalyzed by the MoCo center in the active site, which aligns well with experimental findings. Furthermore, the results provide insights into the residues surrounding the active site and propose an alternative mechanism for developing alternative covalent inhibitors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Coenzymes / metabolism
  • Humans
  • Metalloproteins* / chemistry
  • Oxypurinol*
  • Uric Acid / metabolism
  • Xanthine / metabolism
  • Xanthine Dehydrogenase / chemistry
  • Xanthine Dehydrogenase / metabolism

Substances

  • Oxypurinol
  • Xanthine Dehydrogenase
  • Xanthine
  • Uric Acid
  • Coenzymes
  • Metalloproteins