Angiotensin II (Ang II) is a hormone that plays a major role in maintaining homeostasis. The Ang II receptor type 1 (AT1R) is expressed in acute O2 sensitive cells, including carotid body (CB) type I cells and pheochromocytoma 12 (PC12) cells, and Ang II increases cell activity. While a functional role for Ang II and AT1Rs in increasing the activity of O2 sensitive cells has been established, the nanoscale distribution of AT1Rs has not. Furthermore, it is not known how exposure to hypoxia may alter the single-molecule arrangement and clustering of AT1Rs. In this study, the AT1R nanoscale distribution under control normoxic conditions in PC12 cells was determined using direct stochastic optical reconstruction microscopy (dSTORM). AT1Rs were arranged in distinct clusters with measurable parameters. Across the entire cell surface there averaged approximately 3 AT1R clusters/μm2 of cell membrane. Cluster area varied in size ranging from 1.1 × 10-4 to 3.9 × 10-2 μm2. Twenty-four hours of exposure to hypoxia (1% O2) altered clustering of AT1Rs, with notable increases in the maximum cluster area, suggestive of an increase in supercluster formation. These observations could aid in understanding mechanisms underlying augmented Ang II sensitivity in O2 sensitive cells in response to sustained hypoxia.
Keywords: Angiotensin II; Angiotensin II receptor type 1; Chronic hypoxia; Direct stochastic optical reconstruction microscopy (dSTORM); PC12 cells; Single-molecule localization.
© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.