Traumatic spinal cord injuries (SCI) result in devastating impairment to an individual's functional ability. The pathophysiology of SCI is related to primary injury but further propagated by secondary reactions to injury, such as inflammation and oxidation. The inflammatory and oxidative cascades ultimately cause demyelination and Wallerian degeneration. Currently, no treatments are available to treat primary or secondary injury in SCI, but some studies have shown promising results by lessening secondary mechanisms of injury. Interleukins (ILs) have been described as key players in the inflammation cascade after neuronal injury; however, their role and possible inhibition in the context of acute traumatic SCIs have not been widely studied. Here, we review the relationship between SCI and IL-6 concentrations in the CSF and serum of individuals after traumatic SCIs. Furthermore, we explore the dual IL-6 signaling pathways and their relevance for future IL-6 targeted therapies in SCI.
Thieme. All rights reserved.