The earliest activity-based photoacoustic (PA) probes were developed as diagnostic agents for cancer. Since this seminal work over a decade ago that specifically targeted matrix metalloproteinase-2, PA instrumentation, dye platforms, and probe designs have advanced considerably, allowing for the detection of an impressive list of cancer types. However, beyond imaging for oncology purposes, the ability to selectively visualize a given disease biomarker, which can range from aberrant enzymatic activity to the overproduction of reactive small molecules, is also being exploited to study a myriad of noncancerous disease states. In this review, we have assembled a collection of recent papers to highlight the design principles that enable activity-based sensing via PA imaging with respect to biomarker identification and strategies to trigger probe activation under specific conditions.
© 2023 The Authors. Published by American Chemical Society.