Objectives: The objective of the study is to evaluate the bleaching potential of 6% hydrogen peroxide (6% HP) gels containing NF_TiO2 or Nb2O5 irradiated with a violet LED light and the effects on enamel mineral content and surface morphology.
Methods: Particles were synthesized, and experimental gels were chemically analyzed by preliminary and accelerated stability tests, pH, and HP decomposition rate. Bovine enamel blocks were treated with 6% HP gels containing (n = 10): 5% NF_TiO2, 5% Nb2O5, 2.5% NF_TiO2 + 2.5% Nb2O5 or without particles (6% HP), irradiated or not with LED, and the control was treated with 35% HP. Color (∆E00) and whitening index (∆WID) variations, surface microhardness (SH), average roughness (∆Ra), Ca-P concentration (EDS), and enamel morphology (SEM) were assessed. Bleaching was performed in 3 sessions of 30 min and 7-day intervals. Data were submitted to two- (pH, decomposition rate, ∆E00, and ∆WID) or three-way ANOVA and Bonferroni (SH), Kruskal-Wallis (∆Ra), and Dunnet tests (α = 0.05).
Results: No changes in the gel's color, odor, or translucency were observed. The pH (6 to 6.5) remained stable over time, and light irradiation boosted the HP decomposition rate. NF_TiO2 and Nb2O5-containing gels displayed higher ∆E00 and ΔWID when light-irradiated (p < 0.05). Nb2O5 and Nb2O5 + NF_TiO2 decreased enamel SH (p < 0.05), but no SH changes were found among groups (p > 0.05). No differences among groups were noted in ∆Ra, Ca-P content, and enamel morphology after treatments (p > 0.05).
Conclusion: Experimental light-irradiated 6% HP gels containing NF_TiO2 or Nb2O5 were chemically stable and exhibited bleaching potential comparable with 35% HP.
Clinical relevance: Low-concentrated HP gels containing NF_TiO2 or Nb2O5 and light-irradiated stand as a possible alternative to in-office bleaching.
Keywords: Bleaching agents; Nanoparticles; Niobium; Titanium; Tooth whitening.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.