Traditionally, pitch variation in a sound stream has been integral to music identity. We attempt to expand music's definition, by demonstrating that the neural code for musicality is independent of pitch encoding. That is, pitchless sound streams can still induce music-like perception and a neurophysiological hierarchy similar to pitched melodies. Previous work reported that neural processing of sounds with no-pitch, fixed-pitch, and irregular-pitch (melodic) patterns, exhibits a right-lateralized hierarchical shift, with pitchless sounds favorably processed in Heschl's gyrus (HG), ascending laterally to nonprimary auditory areas for fixed-pitch and even more laterally for melodic patterns. The objective of this EEG study was to assess whether sound encoding maintains a similar hierarchical profile when musical perception is driven by timbre irregularities in the absence of pitch changes. Individuals listened to repetitions of three musical and three nonmusical sound-streams. The nonmusical streams were comprised of seven 200-ms segments of white, pink, or brown noise, separated by silent gaps. Musical streams were created similarly, but with all three noise types combined in a unique order within each stream to induce timbre variations and music-like perception. Subjects classified the sound streams as musical or nonmusical. Musical processing exhibited right dominant α power enhancement, followed by a lateralized increase in θ phase-locking and spectral power. The θ phase-locking was stronger in musicians than in nonmusicians. The lateralization of activity suggests higher-level auditory processing. Our findings validate the existence of a hierarchical shift, traditionally observed with pitched-melodic perception, underscoring that musicality can be achieved with timbre irregularities alone.NEW & NOTEWORTHY EEG induced by streams of pitchless noise segments varying in timbre were classified as music-like and exhibited a right-lateralized hierarchy in processing similar to pitched melodic processing. This study provides evidence that the neural-code of musicality is independent of pitch encoding. The results have implications for understanding music processing in individuals with degraded pitch perception, such as in cochlear-implant listeners, as well as the role of nonpitched sounds in the induction of music-like perceptual states.
Keywords: EEG; melody processing; oscillatory activity; pitch processing; timbre processing.