Background: Polyethylene glycol (PEG) and polysorbate 80 (PS80) allergy preclude from SARS-CoV-2 vaccination. The mechanism(s) governing cross-reactivity and PEG molecular weight dependence remain unclear.
Objectives: To evaluate PEGylated lipid nanoparticle (LNP) vaccine (BNT162b2) tolerance and explore the mechanism of reactivity in PEG and/or PS80 allergic patients.
Methods: PEG/PS80 dual- (n = 3), PEG mono- (n = 7), and PS80 mono-allergic patients (n = 2) were included. Tolerability of graded vaccine challenges was assessed. Basophil activation testing on whole blood (wb-BAT) or passively sensitized donor basophils (allo-BAT) was performed using PEG, PS80, BNT162b2, and PEGylated lipids (ALC-0159). Serum PEG-specific IgE was measured in patients (n = 10) and controls (n = 15).
Results: Graded BNT162b2 challenge in dual- and PEG mono-allergic patients (n = 3/group) was well tolerated and induced anti-spike IgG seroconversion. PS80 mono-allergic patients (n = 2/2) tolerated single-dose BNT162b2 vaccination. Wb-BAT reactivity to PEG-containing antigens was observed in dual- (n = 3/3) and PEG mono- (n = 2/3), but absent in PS80 mono-allergic patients (n = 0/2). BNT162b2 elicited the highest in vitro reactivity. BNT162b2 reactivity was IgE mediated, complement independent, and inhibited in allo-BAT by preincubation with short PEG motifs, or detergent-induced LNP degradation. PEG-specific IgE was only detectable in dual-allergic (n = 3/3) and PEG mono-allergic (n = 1/6) serum.
Conclusion: PEG and PS80 cross-reactivity is determined by IgE recognizing short PEG motifs, whereas PS80 mono-allergy is PEG-independent. PS80 skin test positivity in PEG allergics was associated with a severe and persistent phenotype, higher serum PEG-specific IgE levels, and enhanced BAT reactivity. Spherical PEG exposure via LNP enhances BAT sensitivity through increased avidity. All PEG and/or PS80 excipient allergic patients can safely receive SARS-CoV-2 vaccines.
Keywords: ALC-0159; Allergy; BNT162b2; Basophil activation test; Cross-reactivity; IgE; Polyethylene glycol; Polysorbate 80; SARS-CoV-2; Vaccine.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.