In this work, we propose a multi-task learning-based approach towards the localization of optic disc and fovea from human retinal fundus images using a deep learning-based approach. Formulating the task as an image-based regression problem, we propose a Densenet121-based architecture through an extensive set of experiments with a variety of CNN architectures. Our proposed approach achieved an average mean absolute error of only 13pixels (0.04%), mean squared error of 11 pixels (0.005%), and a root mean square error of only 0.02 (13%) on the IDRiD dataset.
Keywords: Fovea; Optic Disc; Qatar Biobank; Retina.