Objectives: To assess the association of ectopic fat deposition in the liver and pancreas quantified by Dixon magnetic resonance imaging (MRI) with insulin sensitivity and β-cell function in patients with central obesity.
Materials and methods: A cross-sectional study of 143 patients with central obesity with normal glucose tolerance (NGT), prediabetes (PreD), and untreated type 2 diabetes mellitus (T2DM) was conducted between December 2019 and March 2022. All participants underwent routine medical history taking, anthropometric measurements, and laboratory tests, including a standard glucose tolerance test to quantify insulin sensitivity and β-cell function. The fat content in the liver and pancreas was measured with MRI using the six-point Dixon technique.
Results: Patients with T2DM and PreD had a higher liver fat fraction (LFF) than those with NGT, while those with T2DM had a higher pancreatic fat fraction (PFF) than those with PreD and NGT. LFF was positively correlated with homeostatic model assessment of insulin resistance (HOMA-IR), while PFF was negatively correlated with homeostatic model assessment of insulin secretion (HOMA-β). Furthermore, using a structured equation model, we found LFF and PFF to be positively associated with glycosylated hemoglobin via HOMA-IR and HOMA-β, respectively.
Conclusions: In patients with central obesity, the effects of LFF and PFF on glucose metabolism. were associated with HOMA-IR and HOMA-β, respectively. Ectopic fat storage in the liver and pancreas quantified by MR Dixon imaging potentially plays a notable role in the onset ofT2DM.
Clinical relevance statement: We highlight the potential role of ectopic fat deposition in the liver and pancreas in the development of type 2 diabetes in patients with central obesity, providing valuable insights into the pathogenesis of the disease and potential targets for intervention.
Key points: • Ectopic fat deposition in the liver and pancreas is associated with T2DM. • T2DM and prediabetes patients had higher liver and pancreatic fat fractions than normal individuals. • The results provide valuable insights into pathogenesis of T2DM and potential targets for intervention.
Keywords: Diabetes mellitus; Liver; Magnetic resonance imaging; Obesity; Pancreas.
© 2023. The Author(s), under exclusive licence to European Society of Radiology.