Near-Infrared II Hyperspectral Imaging Improves the Accuracy of Pathological Sampling of Multiple Cancer Types

Lab Invest. 2023 Oct;103(10):100212. doi: 10.1016/j.labinv.2023.100212. Epub 2023 Jul 12.

Abstract

Pathological histology is the "gold standard" for clinical diagnosis of cancer. Incomplete or excessive sampling of the formalin-fixed excised cancer specimen will result in inaccurate histologic assessment or excessive workload. Conventionally, pathologists perform specimen sampling relying on naked-eye observation, which is subjective and limited by human perception. Precise identification of cancer tissue, size, and margin is challenging, especially for lesions with inconspicuous tumors. To overcome the limits of human eye perception (visible: 400-700 nm) and improve the sampling efficiency, in this study, we propose using a second near-infrared window (NIR-II: 900-1700 nm) hyperspectral imaging (HSI) system to assist specimen sampling on the strength of the verified deep anatomical penetration and low scattering characteristics of the NIR-II optical window. We used selected NIR-II HSI narrow bands to synthesize color images for human eye observation and also applied a machine learning-based algorithm on the complete NIR-II HSI data for automatic tissue classification to assist pathologists in specimen sampling. A total of 92 tumor samples were collected, including 7 types. Sixty-two (62/92) samples were used as the validation set. Five experienced pathologists marked the contour of the cancer tissue on conventional color images by using different methods, and compared it with the "gold standard," showing that NIR-II HSI-assisted methods had significant improvements in determining cancer tissue compared with conventional methods (conventional color image with or without X-ray). The proposed system can be easily integrated into the current workflow, with high imaging efficiency and no ionizing radiation. It may also find applications in intraoperative detection of residual lesions and identification of different tissues.

Keywords: HSI; NIR-II–synthesized color image; hyperspectral imaging; machine learning predict; pathological sampling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Hyperspectral Imaging*
  • Machine Learning
  • Neoplasms* / diagnostic imaging