Application of SNPs with low minor allele frequencies in missing person identification (MPI) through kinship analysis of DNA mixtures

Electrophoresis. 2023 Oct;44(19-20):1569-1578. doi: 10.1002/elps.202300111. Epub 2023 Jul 16.

Abstract

The need to identify a missing person (MP) through kinship analysis of DNA samples found at a crime scene has become increasingly prevalent. DNA samples from MPs can be severely degraded, contain little DNA and mixed with other contributors, which often makes it difficult to apply conventional methods in practice. This study developed a massively parallel sequencing-based panel that contains 1661 single-nucleotide polymorphisms (SNPs) with low minor allele frequencies (MAFs) (averaged at 0.0613) in the Chinese Han population, and the strategy for relationship inference from DNA mixtures comprising different numbers of contributors (NOCs) and of varying allele dropout probabilities. Based on the simulated dataset and genotyping results of 42 artificial DNA mixtures (NOC = 2-4), it was observed that the present SNP panel was sufficient for balanced mixtures when referenced to the closest relatives (parents/offspring and full siblings). When the mixture profiles suffered from dropout, incorrect assignments were markedly associated with relatedness, NOC and the dropout level. We, therefore, indicate that SNPs with low MAFs could be reliably interpreted for MP identification through the kinship analysis of complex DNA mixtures. Further studies should be extended to more possible scenarios to test the feasibility of this present approach.

Keywords: DNA mixtures; kinship analysis; massively parallel sequencing; missing person identification; single-nucleotide polymorphism (SNP).