Optical constants functions of analytes are indispensable for the effective design of plasmonic sensors. Such sensors are potentially able to enhance the sensitivity by several order of magnitudes which can greatly facilitate the determination of the generally weak spectral signals caused by vibrational circular dichroism. Accordingly, to demonstrate how to obtain these functions, we have determined the dielectric and chirality admittance functions of α-Pinene and Propylene oxide in the mid-infrared spectral range using attenuated total reflection and vibrational circular dichroism spectroscopy. Our iterative formalism starts with an estimation of the absorption index function, followed by the calculation of the refractive index function using the Kramers-Kronig relation and a modelled spectrum based on Fresnel's equations. By comparing the experimental and modelled spectra, we improve the absorption index function. To determine the chirality admittance function, we use the same iterative formalism, but with a modified 4x4 matrix formalism formulated by Berreman. Our results show that the experimental absorbance difference is independent of the dielectric function of the chiral substance and depends linearly on the cuvette thickness. Additionally, we provide a sum rule that can be used to assess the quality of VCD spectra and determine the position of the baseline. Our findings provide crucial insights into the optical properties of chiral substances in the mid-infrared spectral range, which have important implications for a range of applications in fields such as analytical chemistry and materials science.
Keywords: Chirality admittance function; Dielectric function; Infrared spectroscopy; Vibrational circular dichroism.
Copyright © 2023 Elsevier B.V. All rights reserved.