The current treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer (ABC) has been greatly impacted in the past decade by the introduction of antibody-drug conjugates (ADCs), which represent a relatively novel therapeutic class with the peculiar ability to deliver otherwise overtly toxic chemotherapeutics to tumor sites by exploiting the specificities of monoclonal antibodies. Indeed, drug engineering refinements in ADC design, such as through the introduction of cleavable linkers and hydrophobic payloads, resulted in improved patient outcomes in recent years. Two different ADCs, namely trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), have already entered clinical practice for the treatment of HER2-positive ABC. In this scenario, T-DXd has shown to portend better survival outcomes compared to T-DM1, while leaving a large unsought area of unmet medical need upon T-DXd failure. Treatment decision and benefit of cancer drugs following T-DXd still represent an area of clinical controversy, where a preclinical investigation and clinical development should be prioritized. As the pace of innovation is currently accelerating, and with novel ADC formulations advancing in early-phase clinical trials, the whole BC field is changing at an unprecedented rate, with potential broadenings of therapeutic indications. In this review, we present the clinical landscape of HER2-positive advanced BC and discuss our vision on how to tackle T-DXd resistance, providing a perspective on the priority areas of the cancer research in this setting.
Keywords: HER2; antibody–drug conjugates; breast cancer; resistance; trastuzumab deruxtecan.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.