Exposure to ambient air pollutants and acute respiratory distress syndrome risk in sepsis

Intensive Care Med. 2023 Aug;49(8):957-965. doi: 10.1007/s00134-023-07148-y. Epub 2023 Jul 20.

Abstract

Purpose: Exposures to ambient air pollutants may prime the lung enhancing risk of acute respiratory distress syndrome (ARDS) in sepsis. Our objective was to determine the association of short-, medium-, and long-term pollutant exposures and ARDS risk in critically ill sepsis patients.

Methods: We analyzed a prospective cohort of 1858 critically ill patients with sepsis, and estimated short- (3 days), medium- (6 weeks), and long- (5 years) term exposures to ozone, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 μm (PM2.5), and PM < 10 μm (PM10) using weighted averages of daily levels from monitors within 50 km of subjects' residences. Subjects were followed for 6 days for ARDS by the Berlin Criteria. The association between each pollutant and ARDS was determined using multivariable logistic regression adjusting for preselected confounders. In 764 subjects, we measured plasma concentrations of inflammatory proteins at presentation and tested for an association between pollutant exposure and protein concentration via linear regression.

Results: ARDS developed in 754 (41%) subjects. Short- and long-term exposures to SO2, NO2, and PM2.5 were associated with ARDS risk (SO2: odds ratio (OR) for the comparison of the 75-25th long-term exposure percentile 1.43 (95% confidence interval (CI) 1.16, 1.77); p < 0.01; NO2: 1.36 (1.06, 1.74); p = 0.04, PM2.5: 1.21 (1.04, 1.41); p = 0.03). Long-term exposures to these three pollutants were also associated with plasma interleukin-1 receptor antagonist and soluble tumor necrosis factor receptor-1 concentrations.

Conclusion: Short and long-term exposures to ambient SO2, PM2.5, and NO2 are associated with increased ARDS risk in sepsis, representing potentially modifiable environmental risk factors for sepsis-associated ARDS.

Keywords: Acute lung injury; Acute respiratory distress syndrome; Air pollution; Sepsis.

MeSH terms

  • Air Pollutants* / adverse effects
  • Air Pollutants* / analysis
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Critical Illness
  • Environmental Pollutants*
  • Humans
  • Nitrogen Dioxide / adverse effects
  • Nitrogen Dioxide / analysis
  • Particulate Matter / adverse effects
  • Particulate Matter / analysis
  • Prospective Studies
  • Respiratory Distress Syndrome* / etiology
  • Sepsis* / complications

Substances

  • Air Pollutants
  • Environmental Pollutants
  • Nitrogen Dioxide
  • Particulate Matter