High-molecular-weight chitosan has limited applications due to unsatisfactory solubility and hydrophilicity. Discharge plasma coupled with peracetic acid (PAA) oxidation ("plasma+PAA") realized fast depolymerization of high-molecular-weight chitosan in this study. The molecular weight of chitosan rapidly declined to 81.1 kDa from initial 682.5 kDa within 60 s of "plasma+PAA" treatment, and its reaction rate constant was 12-fold higher than single plasma oxidation. Compared with 1O2, ∙CH3, CH3O2·, and O2∙-, CH3CO2∙ and CH3CO3∙ played decisive roles in the chitosan depolymerization in the plasma+PAA system through mechanisms of radical adduct formation. The attacks of CH3CO2∙ and CH3CO3∙ destroyed the β-(1,4) glycosidic bonds and hydrogen bonds of chitosan, leading to generation of low-molecular-weight chitosan; the main chain structure of chitosan was not changed during the depolymerization process. Furthermore, the generated low-molecular-weight chitosan exhibited greater antioxidant activities than original chitosan. Overall, this study revealed the radical adduct formation mechanisms of CH3CO2∙ and CH3CO3∙ for chitosan decomposition, providing an alternative for fast depolymerization of high-molecular-weight chitosan.
Keywords: Antioxidant activity; Chitosan; Cold plasma; Depolymerization; Peracetic acid.
Copyright © 2023 Elsevier Ltd. All rights reserved.